Sunday, June 24, 2012

Capacitor



Capacitor is a passive component used to store charge. The charge (q) stored in a capacitor is the product of its capacitance (C) value and the voltage (V) applied to it. Capacitors offer infinite reactance to zero frequency so they are used for blocking DC components or bypassing the AC signals. The capacitor undergoes through a recursive cycle of charging and discharging in AC circuits where the voltage and current across it depends on the RC time constant. For this reason, capacitors are used for smoothing power supply variations. Other uses include, coupling the various stages of audio system, tuning in radio circuits etc. These are used to store energy like in a camera flash.
 
Capacitors may be non-polarized/polarized and fixed/variable. Electrolytic capacitors are polarized while ceramic and paper capacitors are examples of non polarized capacitors. Since capacitors store charge, they must be carefully discharged before troubleshooting the circuits. The maximum voltage rating of the capacitors used must always be greater than the supply voltage.

Tuesday, May 29, 2012

AT89C51 Microcontroller



AT89C51 is an 8-bit microcontroller and belongs to Atmel's 8051 family. ATMEL 89C51 has 4KB of Flash programmable and erasable read only memory (PEROM) and 128 bytes of RAM. It can be erased and program
to a maximum of 1000 times.

In 40 pin AT89C51, there are four ports designated as P1, P2, P3 and P0. All these ports are 8-bit bi-directional ports, i.e., they can be used as both input and output ports. Except P0 which needs external pull-ups, rest of the ports have internal pull-ups. When 1s are written to these port pins, they are pulled high by the internal pull-ups and can be used as inputs. These ports are also bit addressable and so their bits can also be accessed individually.
 
Port P0 and P2 are also used to provide low byte and high byte addresses, respectively, when connected to an external memory. Port 3 has multiplexed pins for special functions like serial communication, hardware interrupts, timer inputs and read/write operation from external memory. AT89C51 has an inbuilt UART for serial communication. It can be programmed to operate at different baud rates. Including two timers & hardware interrupts, it has a total of six interrupts.
Pin Diagram : 
Pin Description: 

 Pin No
 Function
 Name
1
8 bit input/output port (P1) pins
P1.0
2
P1.1
3
P1.2
4
P1.3
5
P1.4
6
P1.5
7
P1.6
8
P1.7
9
Reset pin; Active high
Reset
10
Input (receiver) for serial communication
RxD
8 bit input/output port (P3) pins
P3.0
11
Output (transmitter) for serial communication
TxD
P3.1
12
External interrupt 1
Int0
P3.2
13
External interrupt 2
Int1
P3.3
14
Timer1 external input
T0
P3.4
15
Timer2 external input
T1
P3.5
16
Write to external data memory
Write
P3.6
17
Read from external data memory
Read
P3.7
18
Quartz crystal oscillator (up to 24 MHz)
Crystal 2
19
Crystal 1
20
Ground (0V)
Ground
21
8 bit input/output port (P2) pins
/
High-order address bits when interfacing with external memory
 
 P2.0/ A8
22
 P2.1/ A9
23
 P2.2/ A10
24
 P2.3/ A11
25
 P2.4/ A12
26
 P2.5/ A13
27
 P2.6/ A14
28
 P2.7/ A15
29
Program store enable; Read from external program memory
PSEN
30
Address Latch Enable
ALE
Program pulse input during Flash programming
Prog
31
External Access Enable;  Vcc for internal program executions
EA
Programming enable voltage; 12V (during Flash programming)
Vpp
32
8 bit input/output port (P0) pins
 
Low-order address bits when interfacing with external memory
 
 P0.7/ AD7
33
 P0.6/ AD6
34
 P0.5/ AD5
35
 P0.4/ AD4
36
 P0.3/ AD3
37
 P0.2/ AD2
38
 P0.1/ AD1
39
 P0.0/ AD0
40
Supply voltage; 5V (up to 6.6V)
Vcc